The Demon!

Type of Ride:

Roller Coaster, Gravity driven

Objectives:

- To determine the height of a distant object.
- To apply estimation skills in determining distances.
- To accurately use a stop watch.
- To calculate the speed of the coaster train at various points during the ride.
- To relate qualitative observations of forces during the ride.

Key Terms:

Acceleration, Friction, Force, Inertia, Kinetic Energy, Mass, Momentum, Potential Energy, and Velocity.

Useful Formulas:

For similar triangles: $h_{1} / h_{2}=l_{1} / l_{2}$
For triangulation: $h_{1}=L \tan \square$
Total height $=h_{1}+h_{2}$
For Speed: $S=d / t$
Conversions:
$88 \mathrm{ft} / \mathrm{s}=60 \mathrm{mph} ; 1 \mathrm{ft} / \mathrm{s} \approx 1 \mathrm{mph} ; 1 \mathrm{~m} / \mathrm{s} \approx 2 \mathrm{mph}$
$1 \mathrm{ft} / \mathrm{s}=0.30 \mathrm{~m} / \mathrm{s} ; 1 \mathrm{mph}=1.60 \mathrm{~km} / \mathrm{hr}$

Data:

Length of track $=2,300 \mathrm{ft}$. or 700 m
Height of first hill $=100 \mathrm{ft}$ or 30.3 m

Preparation / Pre Lab

Measuring Heights:

Materials:

meter/yard sticks, protractors, thread, small fishing weights, data books, and chalk.

1. Using Similar Triangles:

* Review proportions with students
* Have students record each other's heights .
* Students should then find the average of one walking pace. (walk along a meter/yard stick)
* Record both personal height \& pace in lab book.
* Measuring shadows on a sunny day. (Partners should record each others' shadow, then measure or pace off the shadow of a distant object cast on the playground, ie: flagpole, building, or telephone pole.)
* Bring data back into the class room to do calculations.
*Compare answers, if possible obtain exact height of pole to compare with students' measures.

2.Using Triangulation:

* Prepare protractor for measuring $<\mathrm{s}$ by stringing a fishing line through the vertex hole in protractor bring line together using a pinch fishing weight.
* The straight edge of the protractor will be used as a sight line; the angle measure is read by the partner eyeing the plumb line.(see worksheet).
* Review with students how to determine the tangent of an angle.
* Student partners should record each other's height from the eye level to ground (h_{1})
* Return to the outdoors. Students should take a position a measurable distance from the flagpole, telephone pole etc..
* Protractors should be used to measure angle to top of pole from a standing position facing the pole. The angle measure is recorded by the partner.
* Pace off or measure the distance from the flagpole.
* Fit data into formula and solve for \mathbf{h}.

Calculating Speed:

Materials:

Stopwatch, skateboard/coaster or similar, and lab book.

3. Measuring Speed

* Measure out the distance of your chosen ramp or hill, a trundle wheel is helpful in measuring the course.
* Student at top of ramp roll down ramp / hill at signal of timer.
* Timers record duration of ride.
* Repeated trials are necessary to improve accuracy and to give everyone a chance to race down the ramp / hill.
* A variation to be practiced is timing as the racers pass by a single point.
* Make a "train" of racers (two students back-to-back on skateboards).
* Measure the total length of the "train".

Triangulation:

