The Orbit

Do the following while watching:

Observe an object or feature on the ride near the middle of the spinning ride. Does the object seem to be going faster or slower than the cars at the edge of the ride?

For one trip around, the car on the outside ...

goes	\mid farther than \mid as far as \mid not as far as$\|$
takes	
	\mid more time than \mid
\mid the same time as \mid the	
\mid less time than	

goes, therefore	\mid faster than
\mid as fast as	
\mid slower than	$

Do the following after riding:

- As the ride begins, the cars swing outward inward
- As your speed increases, you feel heavier lighter
- After the ride tilts, you feel the heaviest at the bottom at the top along the side
- After the ride tilts, you feel the lightest at the bottom at the top along the side
- When you are upside down you feel as if you are going to fall out of your seat not at all

In a brief paragraph, explain WHY you think each of the five phenomena above happens

The Orbit, continued ...

DATA: (When ride is at full speed)

- Time for car to complete one revolution: \qquad sec
- Distance (estimated) car travels in one revolution: \qquad m, \qquad ft (Estimate distance from front of one car to the front of the next car \& multiply by the number of cars.)

Calculate:

- Speed of the car (speed equals distance divided by time): \qquad m / s, \qquad ft/s
- What is the TOTAL DISTANCE traveled by a car while the ride is in motion?
\qquad m, \qquad ft (Determine the data you must collect to answer this first!)

Do the following while riding: (Choose a time when the ride is as close to vertical as possible)
Use the vertical accelerometer to measure...

- Acceleration at the side of the path: \qquad g's
- Acceleration at the top of the path: \qquad g's
- Acceleration at the bottom of the path: \qquad g's

Attach a rubber washer to a string and hang it from your hand. Describe the motion of the washer as you go through one complete turn horizontally (sideways) and one complete turn vertically (up and down):

HORIZONTAL (sideways):

VERTICAL (up and down):

